

Faculty of Mathematics and Physics CHARLES UNIVERSITY

NOFY077

Introduction to the Linux OS

Peter Huszár

KFA: Department of Atmospheric Physics

Pavel Řezníček

ÚČJF: INSTITUTE OF PARTICLE AND NUCLEAR PHYSICS

September 29, 2021

Overview and Organization

Introduction to the Operation system Linux, focus on the command line, scripting, basic services and tools used in (not only) physics: tasks automation in data processing and modeling

Organization

• Graded Assessment (KZ): attendance to the lectures, worked out homeworks

Literature

- C. Herborth: Unix a Linux Názorný průvodce, Computer Press, Praha, 2006
- D. J. Barrett: Linux Kapesní přehled, Computer Press, Praha, 2006
- M. Sobell: Mistrovství v RedHat a Fedora Linux, Computer Press, Praha, 2006
- M. Sobell: Linux praktický průvodce, Computer Press, Praha, 2002
- E. Siever: Linux v kostce, Computer Press, Praha, 1999
- Number of online sources...

Study materials and homeworks

http://kfa.mff.cuni.cz/linux

Syllabus

- UNIX systems, history, installation, basic applications
- 2 Structure of the Linux OS, file systems, hierarchy of the file system
- Ommand line, shells, remote access (ssh, ftp)
- Processes and their administration, basic system commands, packages, printing
- Users, file and directory permissions
- Work with files and directories, file compression, links, partition
- Text-file processing commands, redirection, pipeline
- Regular expressions
- Ommand line based text editors
- User and system variables, output processing
- Scripts: basic construction, conditionals, loops, functions, automation
- Networking, server-client services: http, (s)ftp, scp, ssh, sshfs, nfs
- $oxed{3}$ Programming in Linux (examples of Fortran, C/C++, Python), version control systems, documents in Latex

Motivation for Linux

Operating systems, two basic types:

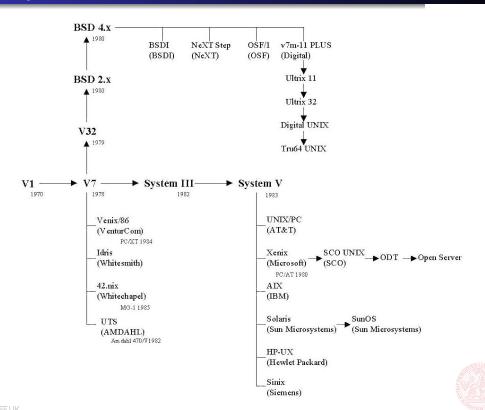
- Windows
- **UNIX** (Mac and Android are also UNIX-based)
- Windows historically more focused on user-PCs
- UNIX systems used on servers (mail, web, computing, networking)
- Nowadays the abilities of both systems are close each to other

Why Linux?

- Powerful command-line (cmd)
 - Applications started from cmd
 - System control via cmd
 - Programs control, compilation, modifications and debugging via cmd
 - Scripting / programming using shell
- Natural remote access (including graphic windows), remote administration
- Open source & free applications, support through wide-community

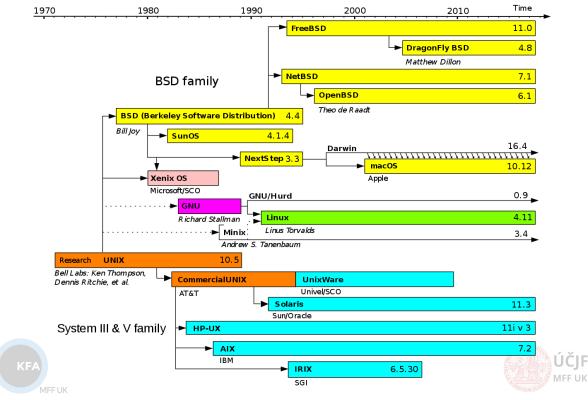
Linux - UNIX Based System

UNIX - trademark of operating system created in Bell Laboratories of AT&T company in 1965


Path to UNIX

- 1964: Bell Telephone Laboratories, General Electric and MIT develops OS Multics (MULTIplexed Information and Computing System)
 - Unfinished
 - Kenn Thompson, Dennis Ritchie, Brian Kernighan
- **1969**: Bell Labs. withdraws from Multics project, *Thompson* writes basic OS (kernel, shell), editor and assembler for the PDP-7 computer
- 1970: Kernighan suggests the name of the OS UNIX (firstly UNICS)
- 1971: Thompson asks for new PDP-11 computer for further development (rejected); Thompson pretends development of automatized office \rightarrow computer assigned for text processing
- 1973: *Thompson* rewrites Fortran language languages B, *Richie* rewrites UNIX into C language for better portability
- 1978: UNIX v7 released for Universities (Berkeley) UNIX divided into two parts:
 - AT&T (System III, System V)
 - Berkeley (BSD 3.0)

JCJF FF UK


September 29, 2021

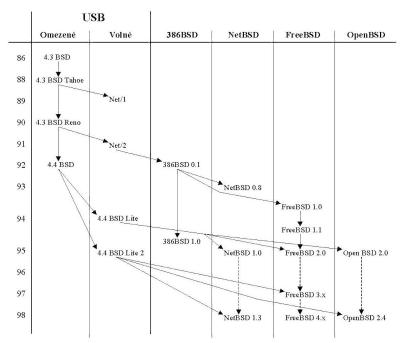
UNIX Systems

MFF UK

UNIX Systems

Present UNIX Systems

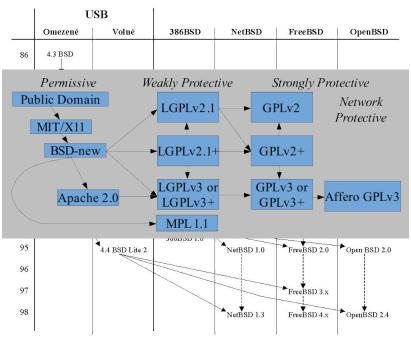
- SUN: Sun OS, Solaris
- Silicon Graphics: Irix
- DEC: Ultrix, Digital Unix
- IBM: AIX
- HP: HP-UX
- Siemens Nixdorf: SINIX
- Novell: UNIXware
- SCO: SCO Unix
- FreeBSD, NetBSD, OpenBSD, ...
- Linux, Mac OS X
- Android OS



Licensing

Non-free source codes \rightarrow release of open and free versions

• Development through free versions



Licensing

Non-free source codes \rightarrow release of open and free versions

Development through free versions

Linux System

Linux foundation

- 1984: Richard Stallman creating GNU (GNU's not UNIX)
 - Attempt to create free (license) system
 - Creating General Public License (GPL)
 - Freedom to run, study, share and modify the software
- 1991: Linus Torvalds trying to create freely available system
 - Based on Minix
 - Writing kernel of the system

GNU Linux - Linux kernel, tools and GNU libraries

Two SW development models:

Bazaar

 Source code developed over the Internet in view of the public - Linus Torvalds

Cathedral

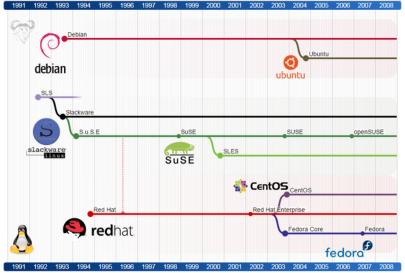
 Source code available with each software release, but code developed between releases is restricted to an exclusive group of software developers

Huszár, Řezníček

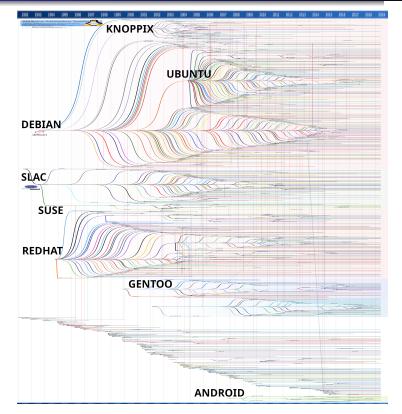
User View on Linux

- Kernel of the system: drivers, processes, memory, filesystem management
- Filesystem: different from Windows
- Console: text-based interface
- Graphical interface:
 - Management allowing remote transfer or graphics windows or even whole screen
 - Terminal (cmd)
 - Common applications: office, web-browsers, multimedia, file-browsers, coding editors, ...
- Software repositories
- Natural multi-user and multitasking

Based on free SW


- ightarrow Practically all parts of the system have number of variants
- → Number of Linux distributions:
 - Various graphical interfaces
 - Various choices of default applications
 - Various program and library versions (stable vs. bleeding edge)
 - Various SW repository types

Linux Distributions


- List of components: kernel of the operating system GNU/Linux, libraries and other GNU tools
- Have its own installation image, packages and their repositories
- Historically 3 distributions: Debian, Red Hat and Slackware expanded into several hundreds, including Ubuntu, openSUSE, Fedora, Mandriva, Gentoo, ...
- Most distributions have their own Live versions: run from USB stick or CD/DVD

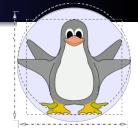
Linux Distributions Chart (2019)

Debian

- *Debian* is one of the **most extensive** distributions
- Fully developed by the community
- Supports 11 platforms:
 - amd64, i386, Arm, PowerPC, mips, s390, ...
- More than 50000 packages
- Includes even non-Linux kernels (FreeBSD, NetBSD)
- Very specific development cycle:
 - \bullet Deployment of <code>stable</code> release (getting only minor security updates) once per \sim two years
 - Very stable and secure Linux, often used for servers
 - In the mean time new packages and package versions are tested in experimental, unstable and testing branches
 - After certain time the testing release becomes stable
 - For impatient users, there are also backports for the stable release
 - Using testing distribution can serve as relatively stable "rolling distribution" (continuously
 getting updates without and "release" dates)
 - Using unstable release as "rolling" is not that comfortable as it can contain serious incompatibilities
- Debian (and most of its derivaties) uses package system based on *.deb packages and system apt
 - Automatic resolution of package dependencies, conflicts, diversions, alternatives
 - Pre/post-installation scripts
 - Complex system to create or build own packages
 - Widely considered as best packaging system

14 / 90

Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021


Ubuntu

- Ubuntu is a system based on Debian
- Free, with both community and professional support
- Ubuntu community is based on principles described in the Ubuntu Manifesto:
 - Should have the freedom to download, run, copy, distribute, study, share, change and improve their software for any purpose, without paying licensing fees.
 - Should be able to use their software in the language of their choice.
 - Should be able to use all software regardless of disability.
 - Southern African philosophy of ubuntu (literally, "human-ness")
- Suitable both as user-PC as well as for servers
- Supports most common architectures: PC 32bit (i386), PC 64bit (amd64)
 and PowerPC (older Apple iBook, Powerbook, G4, G5)
- Half-year release, long-term supported release every 2 years
- Unity is the default GUI (Graphic User Interface)
 - MAC-like, touchscreen friendly
 - However, number of variants with different GUI exists (Kubuntu, Xubuntu, Lubuntu, ...),
 - As well as specific-focus derivatives (Edubuntu, ...),
 - or enhanced distributions (Linux Mint, ...)

KNOPPIX

- KNOPPIX is a primarily Live OS
- Already after installation contains wide range of SW, automatic HW detection and HW support (sound, graphics, peripherals)
 - The CD contains up to 2 GB of compressed SW
 - The DVD version up to 8 GB of compressed SW
- Can serve as "rescue" Live system
- Can be installed as ordinary user-PC as well
- Derivatives: localized and enhanced system Danix

Red Hat

- Red Hat is a commercial Linux
- Enterprise-level support
- Packages system uses *.rpm files (2nd widely-used package system)
- Number of free derivates with community-support only

Fedora

TM

- Fedora is a non-commercial Red Hat derivative
- Development (community) supported by the Red Hat company
- Serves as testing platform for the commercial *Red Hat* releases
- Progressive, implementing new features very soon
- Focused on user-PC, suitable for beginners
- Wide range of SW in the distribution
- Supports most common architectures: i386, amd64 and PowerPC
- Very strict in licensing, e.g. yet recently missing *.mp3 support

CentOS

- CentOS is another Red Hat derivative
- Originally started as independent distribution, but transferred under *Red Hat* (developers from the *Red Hat* open-source team)
- Free and community supported
- Often used on servers
 - Used in CERN (European Organization for Nuclear Research)

Mandriva

- Mandriva is originally based on Red Hat
 - Started in 1998 started by Geld Welb, attempting to make more comfortable GUI experience
 - The modified distribution, called Mandrake, was put on servers and Geld Welb left for holidays
 - · Strong response from users after return, offers to contribute from developers and testers
 - Nowadays, Mandriva has number of developers in France and USA
- Focusing on office-PC and multimedia-PC
- Wide range of SW in the distribution
- Easy maintenance
- Strong **involvement of users** on the final shape of the distribution
 - Beta-testers
 - Suggestions for improvements and changes

Slackware

- Slackware was the first widely used Linux distribution,
 created in 1992 by Patrick Volkerding, who remains its only official developer
- Although many contributors bring new packages, the existence of the only one developer makes the concept of the distribution unified and development trouble-free
- Slackware is known for simplicity and clarity:
 - Using easy to understand text configuration files
 - Transparency in every process
- Simple packaging system, able to only install and remove packages:
 - No dependency resolutions
 - No automatic updates
 - ullet Very flexible in what is being installed on the system
 - Still there are enhancements that overcomes the simplifications above

- SUSE was created in 1992 in Germany
 - First release in 1994
 - 2003/2004 bought by Novell
- Release of boxed version with manual first (together with Live DVD for preview only), online after serveral months
- Possibility to buy professional support
- Later project openSUSE:
 - Community based program sponsored by Novell
 - Easier and free access to SUSE Linux

Gentoo

- Gentoo uses system similar to the BSD ports, called Portage
 - Portage is a very flexible packaging system (flexible in the installation and maintenance of the SW)
 - SW is being built from source at the time of installation
 - The Portage system allows to set various installation configurations via use-flags
 - Includes build-dependencies
 - Safe installation and deinstallation of packages (via so called sandbox)
 - Protection of config files etc.
- **Very flexible installation**, e.g. one can built system from source-code with selected optimization → *Gentoo* is often considered as **metadistribution**
- Active development, rapid fixes and updates
- Half-year releases

Cygwin

- Cygwin is a Linux system that is compiled and runs natively on Windows
 - No emulation as virtual machine
- Settings partly bound to windows (users)
- Possible to lanuch windows programs
- Nowadays owned by Red Hat

Windows Subsystem for Linux

- Windows Subsystem for Linux (WSL) introduced in 2016 Windows update
 - Shell on Windows / Ubuntu on Windows
 - But not really limited to one distribution
 - Enable in "Windows Features" seetings
- Allows to run linux binaries (64bit) natively on Windows 10
- Can also run graphical applications (after some tunning...)
- Superuser (root) privileges limited (can't change Windows config network etc.)
- Underlying principle: Linux system calls translated to Windows system calls
 - Performance worse than on native Linux
- Special filesystem

VirtualBox, VMware

- VirtualBox and VMware create virtual machine, in which another OS can run (Windows, Linux, MAC)
- Commercial SW, VirtualBox is open-source and free for personal or educational use
- Makes use of Intel/AMD hardware-assisted virtualization
- Can run several Linux installations on Windows in parallel (if enough resources on PC)

Linux Installation Notes

Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021 27 / 90

Install Linux Inside Windows

- Not genuine Linux experience: administration and hardware management may be limited by what Windows allows...
- No need for disk repartitioning
- Easy to uninstall

Cygwin

• Simply follow installation instructions, installs as an ordinary windows application

Windows Subsystem for Linux

- Enable in "Windows Features" settings
- Install *Ubuntu* via Microsoft Store: search for "Run Linux on Windows" and choose distribution

VirtualBox

- Install VirtualBox
- Create new virtual system: allocate part of RAM and disk space (VDI type)
- Oownloaded Ubuntu ISO image and install the system in VirtualBox via "Start" button

ČJF FF UK

28 / 90

MFF U

Install Linux as Dual-Boot Machine

- Free disk space in Windows
 - May need to switch off (temporarily) disk encrypting, otherwise disk repartitioning won't work
 - Disk cleanup, including cleanup of system files (downloaded updates, old win versions, log files from upgrades, ...)
 - Compress system files
 - Disable hibernation (removes large hiberfile.sys file)
 - Make small memory swap file (shrinks large pagefile.sys file)
 - Make small space for restore points
 - Make small shadow storage space
 - Cleanup C:\SWSETUP which contains driver updates installation files
 - Backup notebook recovery partition to USB stick and then delete the partition; not the $\sim (1-2)$ GB at disk beginning, but the ($\sim (10-20)$ GB at the end!
 - \bullet \to Can shrink Windows partition down to \sim 30 GB (but will need USB for larger Windows updates)
- Most distributions have (Live) CD/DVD/USB to start the installation
 - Install the *.iso image on USB using Rufus program on Windows
- No complications when following instructions...
- Mowever, it might be good to have partitioning of disk under control, instead of relying on the partitioning the Live Linux performs

Disk Repartitioning

- Use Live Linux, e.g. specialized *System Rescue CD* using *GParted* program
- Pollow instruction to install on USB:
 - With Rufus on Windows
 - With dd if=name.iso of=/dev/sdX; sync on Linux
- May need to play with Boot/Startup sequence and with UEFI/SecureBoot in BIOS to allow boot from the USB stick
- Most likely will have to create logical partition, since the default partition table does allow more than 4 primary partitions
 - Windows, Windows recovery, Linux root, Linux home, swap

Partitions to create

- Root partition '/' of type ext4 and size \sim (20 50) GB
- Home partition '/home' of type ext4
- Swap partition of type swap
 - ullet > 2× RAM for small RAM systems (< 4 GB)
 - ullet > 1imes RAM for middle-size RAM systems (< 8 GB)
 - ullet 0.5imes RAM for large RAM systems (> 8 GB) and when hibernation-to-disk is not needed
 - Ubuntu recommendations: $SWAP=\sqrt{RAM}$ when hibernation-to-disk is not needed, add $1\times RAM$ when it is needed

When touching (resizing) Windows partition, always make only one step at a time and reboot to Windows for automatic check of the newly-repartitioned disk.

Otherwise Windows may become unbootable! (although there is a fix...)

Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021

ÚČIF

Troubleshooting

Dual-boot features

- May need to re-point WinRE (Windows Recovery Environment) to the correct partition on disk (usually is at the end of the disk)
 - reagentc /info
 - reagentc /setreimage /path \?\GLOBALROOT\device\harddisk0\partition2\Recovery\WindowsRE
 - reagentc /enable
- Windows recovery to notebook factory settings may not work anymore
- Putting PC to hibernate on disk in both Windows and Linux at the same time may lead to loss of data if Windows disks are mounted in Linux

Linux boot recovery (Grub)

- May happen if / after reinstalling Windows
- Follow instructions at System Rescue CD

31 / 90

Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021

Linux Uninstall

- Do not forget any data on your Linux disks :)
- Set bootable flag (e.g. in GParted) program back to the Windows system partition
- Install back the Windows Master Boot Record from within Linux (or Live Linux); several ways are possible, depending on what SW is available on your Linux (commands below to be run as root):
 - dd bs=440 count=1 conv=notrunc if=/usr/lib/syslinux/mbr.bin of=/dev/sdX (using syslinux package, mbr.bin may be located at different path)
 - B lilo -M /dev/sdX mbr (using lilo package)
 - install-mbr -i n -p D -t 0 /dev/sdX (using mbr package)
 - apt install boot-repair from ppa:yannubuntu/boot-repair repository
- Boot to Live Linux (System Rescue CD)
- Wipe data (rewrite with random contents) using schred / wipe commands
 - shred -v -z -n 10 /dev/sdXY
- Oblete the Linux partitions and resize back the Windows one(s)

Again, the deletion and resizing should be done in single steps, followed by reboots to Windows!

Linux Graphical User Interface and Software

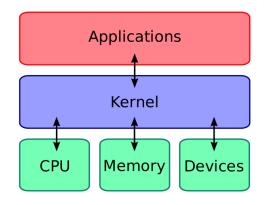
Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021 33 / 90

Bootloader

Loader of the Linux kernel

- Most current Linux distributions use GRUB as the default bootloader
- It is loaded into the Master Boot Record of the disk
- Allows to load other systems too → dual-boot
 - The installed systems are usually automatically recognized and added to the boot menu
- Allows to perform also memory tests
- Allows to add parameters to the kernel loading
- Allows rescue mode system load (e.g. when a disk fails to mount)

```
Ubuntu
Advanced options for Ubuntu
Memory test (memtest86+)
Memory test (memtest86+, serial console 115200)
**Kali Linux 2014 Live
Kali Linux 2014 Live Encrypted-Persistence
Puppy Slacko 5.7.0 PAE
Gentoo Live DVD ISO
Backbox Live ISO
```



Linux Kernel

Linux kernel is the core interface between a computer's hardware and its processes

- Controls processes: create, stop, suspend, communicate, access to peripherals, ...
- Manages filesystems: allocation, freeing, protection, keeping consistency, ...
- Memory management: allocation, protection, swapping of unused memory to disk, ...
- Management of processes CPU time sharing: planning algorithm, assignment of time quantum, priorities, ...
- Can have installed several kernel versions for the same system; GRUB allows to choose the one to boot

Console and Virtual Terminals

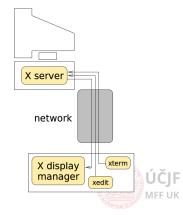
Text-based interface to the system

- Provides a way for the kernel and other processes to output text-based messages to the user, and to receive text-based input from the user
- Works in parallel to the GUI
- Especially useful when GUI is not starting or not installed (servers)
- Limited support for localization, mouse and copy & paste; can be enhanced by SW packages as consolation or gpm

Switch between console and GUI (X-server)

- Virtual terminals: Ctrl+Alt+F1 (F1-F6)
- GUI: Ctrl+Alt+F7 (and above, if more X-sessions are running)

Display Manager


X display manager is a graphical login manager which starts a login session on an X server from the same or another computer.

- Natural use of graphical applications on remote server
- Number of alternatives, distributions typically binds them with the used Window Manager, resp. Desktop Environment
- Some distributions prefer to use light *Display Managers*
- Choose user to login, *Desktop Environment* to start, switch to another user, reboot/shutdown/sleep menu
- Analogy of the Windows login screen

Display Managers

- LightDM, SDDM, SLiM, LXDM, MDM (light display managers)
 - Not all support remote logins
- KDM (KDE Display Manager)
- GDM (Gnome Display Manager)

37 / 90

KFA

MFF U

Window Manager and Desktop Environments

Window Manager (WM) is a system software that controls the placement and appearance of windows within a windowing system in a graphical user interface (GUI). It can be part of a *Desktop Environment* (DE) or be used standalone.

One can install several Desktop Environments in parallel and test them. KDE and Gnome are the heaviest and most feature-full DEs

- Gnome3 / Unity MAC like look
- Cinnamon Gnome3 port with Windows-like look
- KDE Windows-like look
- Mate Gnome2 based
- Xfce4, LXDE/Qt light environment, but still feature-full
- IceWM extremely light Window Mananger
- Native support for multiple desktops
- Applications can use different libraries for graphics decoration, typically unified for a given DE. However, the applications written for specific DE can still be used in other DE or WM.

KFA

MIFFUK

GUI Features

Copy & paste in/from a clipboard

- Highlighting automatically copies highlighted text into clipboard
- Paste action is triggered by mouse middle button
- Most GUI applications support in addition Windows-like Ctrl+c & Ctrl+v
 - \bullet Some applications (terminals, where Ctrl+c is reserved) support Ctrl+Shift+c & Ctrl+Shift+v
- Number of enhanced clipboard applications allowing to keep in memory multiple texts at one time

Drag & drop

 Drag and drop works for most graphical applications, but may not be available for the most simple Window Managers

Recycle bin

- The most complex *Desktop Environments* support *Recycle Bin*, but only for files deleted in their specific file-browser.
- ullet Other file-browsers and especial deletion in terminal does not put files into the $Recycle\ Bin
 ightarrow$ the files are instantly deleted.
- Moreover, the system may be configured from start not to use Recycle Bin at all

ČJF FF UK

39 / 90

MFF UK

Quick list of Applications

Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021 40 / 90

Office Suites and Applications

Microsoft Office not available on Linux. However, there are number of alternatives:

- LibreOffice (former OpenOffice) fully included
- Gnome Office: Abiword, Gnumeric, Gnucash
- Calligra Suite (KDE focused office package)

PDF viewers:

- Okular: KDE PDF viewer, capable of adding annotations
- Evince: Gnome PDF viewer
- Old Adobe reader (needs special package repository)
- Foxit reader: not in package repositories, needs to be downloaded and installed manually

Latex packages naturally included in all distributions, with number of graphical editors allowing to debug Latex compilation and preview generated PDFs.

- Texstudio
- Texmaker
- Kile (KDE)
- Visual Studio Code + Latex plugin: free Microsoft product

41 / 90

/IFF UK

Web-Browsers

The most common browsers are included:

- Firefox
- Chrome / Chromium
- Opera

There are also DE specific ones:

- Konqueror (KDE)
- Epiphany (Gnome)

As well as **terminal-based browsers** (limited use only, no javascripts etc.):

- Lynx / Links / Elinks
- curl / wget
- Useful for scripts to extract information from web

File-Browsers

Number of file browsers, usually specific to DE:

- Dolphin (KDE)
- Nautilus (Gnome)
- Thunar (XFce4)
- Krusader: KDE-based browser with Total Commander like look and features
- Midnight commander: terminal based 2-panel file browser (Norton/Total Commander like); very useful when working on remote machines as it does not need to transfer graphics

Terminal Emulators

Number of **terminal emulators**, usually specific to DE:

- xterm: basic terminal emulator
- rxvt-unicode: basic terminal emulator with unicode support
- *konsole*: KDE-based terminal emulator, support for tabs, complex configuration including predefined profiles etc.
- *gnome-terminal*: Gnome-based terminal emulator, support for tabs, complex configuration including predefined profiles etc.
- xfce4-terminal: Xfce4-based terminal emulator, support for tabs, complex configuration

Editors

Editors for programmers with various level of IDE:

- Kate: KDE based
- KDevelop: KDE based
- Geany: Gnome based
- Eclipse: heavy, Java based
- *Gedit*: light
- Visual Studio Code: Microsoft product, but open-source and free use (both home and commercial)

Console editors (useful when working on remote machines):

- *nano*: simple
- *jed*: simple
- vim: very powerful, but difficult for beginners
- emacs: very powerful, but difficult for beginners

Multimedia

Figures:

- Gwenview / Gthumb as picture viewers
- Gimp for bitmap drawings editing
- Inkscape for vector drawings editing

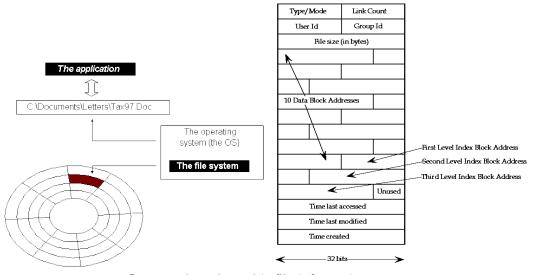
Video:

- VLC
- SMplayer
- Xine

Number of **command-line programs** for figures/audio/video conversions and processing

- convert for figures manipulations
- ffmpeg for audio/video manimulation

Filesystems



Huszár, Řezníček Linux: Introduction NOFY077 September 29, 2021 48 / 90

Filesystem

System defining the way files and directories are stored on the physical disk

Command to show this file information: stat

