
Faculty of Mathematics and Physics
CHARLES UNIVERSITY

NOFY077

Introduction to the Linux OS

Peter Huszár
KFA: Department of Atmospheric Physics

Pavel Řezńıček
ÚČJF: Institute of particle and nuclear physics

December 21, 2023

https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NOFY077
https://kfa.mff.cuni.cz/?page_id=238&lang=en
https://kfa.mff.cuni.cz/
http://ipnp.cz/~reznicek/
http://ipnp.cz/

Overview and Organization

Introduction to the Operation system Linux, focus on the command line,
scripting, basic services and tools used in (not only) physics: tasks
automation in data processing and modeling

Organization

Graded Assessment (KZ): attendance to the lectures, worked out homeworks

Literature

C. Herborth: Unix a Linux - Názorný pr̊uvodce, Computer Press, Praha, 2006

D. J. Barrett: Linux - Kapesńı p̌rehled, Computer Press, Praha, 2006

M. Sobell: Mistrovstv́ı v RedHat a Fedora Linux, Computer Press, Praha, 2006

M. Sobell: Linux - praktický pr̊uvodce, Computer Press, Praha, 2002

E. Siever: Linux v kostce, Computer Press, Praha, 1999

Number of online sources...

Study materials and homeworks

http://kfa.mff.cuni.cz/linux

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 2 / 46

http://kfa.mff.cuni.cz/?page_id=1236

Syllabus

1 UNIX systems, history, installation, basic applications

2 Structure of the Linux OS, file systems, hierarchy of the file system

3 Command line, shells, remote access (ssh, ftp)

4 Processes and their administration, basic system commands, packages, printing

5 Users, file and directory permissions

6 Work with files and directories, file compression, links, partition

7 Text-file processing commands, redirection, pipeline

8 Regular expressions

9 Command line based text editors

10 User and system variables, output processing

11 Scripts: basic construction, conditionals, loops, functions, automation

12 Networking, server-client services: http, (s)ftp, scp, ssh, sshfs, nfs

13 Programming in Linux (examples of Fortran, C/C++, Python), version control
systems, documents in Latex

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 3 / 46

Shell Variables

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 4 / 46

Variables
BASH variables

You can use variables as in any programming languages. There are no data types. A
variable in bash can contain a number, a character, a string of characters. You have
no need to declare a variable, just assigning a value to its reference will create it.

Creation and assigning a variable

STR="Hello World!"
echo ${STR} # to refer to variable value, use $
MYVAR=1000000
echo ${MYVAR} MYVAR # this prints ’1000000 MYVAR’

There are system variables that control the behavior of the system/shell/GUI:
The command set will list all the system/shell variables (and functions - see
later)
E.g. $HOME - the HOME directory, $LANGUAGE - the system language, $PS1
- the look of the prompt
E.g. $PATH - the list of paths, where BASH looks for binary files
User can define his own system variables by setting them in /̃.bashrc
use export MYVAR="value" in order the variable behaves as global
A variable can be in three states: defined with a value (MYVAR=value), defined
with NULL value (MYVAR=) and unset. To unset a variable, use unset MYVAR.
You can define new variables with existing ones:
NEWVAR=${OLDVAR1}${OLDVAR2} (this example merges two strings)

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 5 / 46

Variables
Variable expansion

Bash enables numerous operations on variable value and gathering information
on the variable (besides ”asking” for its value)

${#MYVAR} # the length of variable value
${!prefix*} # prints all variables with their names starting with "prefix"
${MYVAR#pattern} # removes the match for pattern from the beginnig of MYVAR value
${MYVAR%pattern} # same as above but from the end of value
${MYVAR/pattern/string} # replaces pattern in MYVAR with string
${MYVAR^^} and ${MYVAR,,} # makes variables characters upper/lower case

In the above examples, variables are ”expanded” to a new value, which can be
written out (with echo) or just saved to different variable(s).

In the followig example, we rename all jpg files in a directory to JPG

for f in *.jpg; do # we will learn later
echo "Renaming $f ..."
mv $f ${f/.jpg/.JPG}

done

For a full list of variable expansion possibilities, see https://www.gnu.org/
software/bash/manual/html_node/Shell-Parameter-Expansion.html

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 6 / 46

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Variables
Command output substitution in a variable

The output of any command can be assigned to a variable as value in two
syntactical way:

MYVAR=$(mycommand) # preferred
MYVAR=‘ mycommand ‘ # not preferred
the first way enables nesting:
MYVAR=$(mycommand $(anothercommand)) # mycommand takes the output of another command as argument

eval - is a built-in Linux command which is used to execute arguments as a shell
command. It combines arguments into a single string and uses it as an input to
the shell and execute the commands.

MYVAR="ls -l /mydir"
eval $MYVAR
MYVAR=’$’
MYVAR2=value
eval echo ${MYVAR}MYVAR2

Use variable as a (part of) name for another variable.

MYVAR_A="123"
i=A
echo $((MYVAR_$i))
eval MYVAR_$i="456"
echo $MYVAR_A

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 7 / 46

Variables
Arrays in BASH

Bash supports 1-dimensional arrays with arbitrary integer indexing

MYARR= (1 2 a b ahoj abc) # definition of an array, in this case indexing is starting from zero
echo ${MYARR[0]} -> 1 etc.
MYARR[100] = value # we can define/add arbitraty index
MYARR=([7]=a [10]=b [100]=c) # possibility of defining arbitrary index
MYARR+=(newelement1 newelement2) # extenstion of array

Different information can retreived of arrays, including its length, list of elemets,
list of indexes

echo ${MYARR[*]} # prints all the elements
... ${#MYARR[*]} # number of elements
... ${!MYARR[*]} # the list of indexes

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 8 / 46

Scripts

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 9 / 46

Scripts (reminder)

Sequence of commands to be processed.

Allows functions, loops, conditions, call external commands

Two ways how to run a script:
./script.sh: starts a new shell and runs the script in it (script file must be executable:
chmod +x ./script.sh

source ./script.sh (or also . ./script.sh: runs the commands from the script one by
one in the current shell → i.e. as if one would write them manually in the current terminal
*.sh used for bash-compatible scripts
*.csh used for csh-compatible scripts

are used for comments

Special header ”comment”: #!/usr/bin/zsh instructs the script to be run by
the zsh shell. Not only for shells, but also for interpreters like python

exit [number] to quit script [and possibly return a return code]
Not needed at the very end of a script, it will end by itself

set -x command inside a script instruct to show the commands being run by
the script (i.e. for debugging)

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 10 / 46

Special characters (reminder)

’’ (single quotes) do no interpret special chars, while "" (double quotes) do
e.g. echo ’$i’ vs. echo "$i"

‘‘ (single backquotes) to insert output of command between the quotes
But better use $(command) instead

; (semicolon) allows to put more commands on single line
e.g. echo "ahoj" ; echo "abc"

& at the end of line to run program in the background, while continuing in the
script

\ (backslash) cancels meaning of a special character
e.g. echo "\$i"
e.g. not to interpret space (./script.sh ahoj\ abc = ./script.sh "ahoj abc")
e.g. to allow quotes inside quotes (echo "var = \"ahoj\"")
at the end of line means wrapping - the line continues and the next line. Otherwise
end-of-line is interpreted as delimiter of next command (equivalent of ;)

echo \
"ahoj"

for myfile in filename1 \
filename2 \
filename3 \

do
echo $myfile

done

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 11 / 46

Script special variables

Input arguments

The arguments passed with script are accessiable via special variables

./script.sh arg1 arg2 arg3 ...

$1, $2, $3, ... Individual arguments on command line (positional parameters)
$# Number of command-line arguments
$* All arguments on command line ("$1 $2 ...")
$@ All arguments on command line, individually quoted ("$1" "$2" ...)
$0 Command name

Use shift command to ”destroy” the first argument and shift the list of arguments to left,

i.e. $1 becomes what was $2, $2 what was $3 etc., while original content of $1 is lost

Control of run commands in script (as well as in shell)

$? Return value (exit code) of the last preceding command
$! Process ID number (PID, see ’ps axuf’ of the last preceding command
$$ Process ID number of the current process (the shell running the script)

Quick check of input variables content (script: $var replace by $1)

${var:-value} Use var if set; otherwise, use value
${var:=value} Use var if set; otherwise, use value and assign value to var
${var:?value} Use var if set; otherwise, print value and exit
${var:+value} Use value if var is set; otherwise, use nothing

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 12 / 46

Test expressions

test EXPRESSION: compare values, check file types
[EXPRESSION]: alternative notation

Return code $? is 0 if true, 1 if false

(EXPRESSION) EXPRESSION is true
! EXPRESSION EXPRESSION is false
EXPRESSION1 -a EXPRESSION2 both EXPRESSION1 and EXPRESSION2 are true
EXPRESSION1 -o EXPRESSION2 either EXPRESSION1 or EXPRESSION2 is true
-n STRING the length of STRING is nonzero (also without -n)
-z STRING the length of STRING is zero
STRING1 = STRING2 the strings are equal
STRING1 != STRING2 the strings are not equal
INTEGER1 -eq INTEGER2 INTEGER1 is equal to INTEGER2
INTEGER1 -ge INTEGER2 INTEGER1 is greater than or equal to INTEGER2
INTEGER1 -gt INTEGER2 INTEGER1 is greater than INTEGER2
INTEGER1 -le INTEGER2 INTEGER1 is less than or equal to INTEGER2
INTEGER1 -lt INTEGER2 INTEGER1 is less than INTEGER2
INTEGER1 -ne INTEGER2 INTEGER1 is not equal to INTEGER2

FILE1 -nt FILE2 FILE1 is newer (modification date) than FILE2
FILE1 -ot FILE2 FILE1 is older than FILE2
-d FILE FILE exists and is a directory
-e FILE FILE exists
-f FILE FILE exists and is a regular file
-L FILE FILE exists and is a symbolic link (same as -h
-r FILE FILE exists and read permission is granted
-w FILE FILE exists and write permission is granted
-x FILE FILE exists and execute (or search) permission is granted
-s FILE FILE exists and has a size greater than zero

... and other file flags (ownership, types)

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 13 / 46

Expressions

Arguments in EXPRESSION typically contain output of commands

test $(cat /etc/passwd | cut -d: -f1 | wc -l) -gt 100
test ‘cat /etc/passwd | cut -d: -f1 | wc -l‘ -gt 100

Be careful to treat cases when arguments in expression can contain spaces,
better always use "" for string arguments (works for integers too though),
especially when argument is an output of command with not-well predictable
result ! (e.g. filenames can contain spaces...)

i="ahoj abc"
test $i = "ahoj abc" # results in: bash: [: too many arguments
test "$i" = "ahoj abc" # OK

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 14 / 46

Conditions - if/then/else

Use result of test

Notation using square brackets [EXPRESSION]

if [EXPRESSION]
then

command1
elif [EXPRESSION]
then

command2
else

command3
fi

if [EXPRESSION] ; then
command1

elif [EXPRESSION] ; then
command2

else
command3

fi

Short one-command condition using && and/or ||:

[EXPRESSION] && command1 || command2

is equivalent to:

if [EXPRESSION] ; then command1 ; else command2 ; fi

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 15 / 46

