
Conditions - case

Equivalent of if/then/elif/elif/.../else/fi statements chain

Can use shell pattern matching (e.g. *)

Use | for OR of matches

On match the sequence of commands is run till ;;

*) typically used for safety else with an error message that there was no match

case $varname in
pattern1)

command1
;;

pattern2|pattern3|pattern4)
command2
;;

*)
command_error_no_match

esac

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 16 / 46

Loops - while/until/do/done

Keep looping (un)till EXPRESSION is valid

Assuming the arguments in the EXPRESSION are changing during the sequence
of commands in the loop, thus allowing the loop to stop at some point

Can immediately stop the loop with break command

Can immediately jump to next iteration with continue command

While

Stop looping if EXPRESSION becomes false

while [EXPRESSION]
do

commands
if [...] ; then break ; fi # alternative way to stop the loop

done

Until

Stop looping when EXPRESSION becomes true

until [EXPRESSION]
do

commands
if [...] ; then break ; fi # alternative way to stop the loop

done

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 17 / 46

For cycle

Loop over predefined list of items
The list of items to cycle over is space-separated
Can immediately stop the loop with break command
Can immediately jump to next iteration with continue command
seq 1 100 to generate list of indexes from 1 to 100

for var_i in item1 item2 item3
do

commands
if [...] ; then break ; fi # possible way to stop the loop prematurelly

done

Space separation in list

Potentially dangerous when list contains items with space, e.g. weird filenames

For files use find command instead of for cycle

Or replace spaces by a defined string and inside the loop revert this replacement:

Would not work for files with space
for i in $(ls -1) ; do

echo $i
done

Works:
for ii in $(ls -1 | sed ’s, ,__mezera__,g’) ; do

i=$(echo $ii | sed ’s,__mezera__, ,g’)
echo $i

done
Works
find . -maxdepth 1 -name ’*’ -exec echo {} \;
Works
find . -maxdepth 1 -name ’a*’ | while read i ; do echo $i ; done

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 18 / 46

For cycle

Loop over predefined list of items - cont’d

The list of items to cycle over can be defined alternatively like:

for i in {1..5};do echo $i ;done
from BASH v4.0+, {START..END..INCREMENT} syntax
for in {0..10..2};do echo $i ;done
control the width of the loop item:
for i in {001..500};do echo $i ;done
or combining with other character and multiple ranges
for i in a{001..500} {700..999};do echo $i ;done

The C-style Bash for loop
for ((initializer; condition; step))
for ((c=1; c<=5; c++));do echo $c ;done

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 19 / 46

Functions

Similar behaviour as in other programming languages

Mostly to help organization/readabilty of the code

Accept parameters, treated in similar way as input parameters of scripts (i.e. $1,
$2, etc.)
Output transfered via echo command or e.g. my modifying a ”global” variable

x=0

myfunc() {
for i in $@ ; do

echo $i
done
x=1

}

echo $x
myfunc a bb cc 123
echo $x
x=0
str=‘myfunc dd ee‘ # x is not changed, myfunc is run in separate shell !
echo $str
echo $x

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 20 / 46

Automatic script options

Use of getopt command

Colon : after option letter specifies that the option is expecting an argument

while getopts ’ha:’ OPTION; do
case "$OPTION" in

h)
echo "Option h (does not expect argument)"
;;

a)
echo "Option a with value \"$OPTARG\""
;;

?)
echo "script usage: $(basename $0) [-h] [-a somevalue]" >&2
exit 1
;;

esac
done
shift "$(($OPTIND -1))"

echo "Remaining input arguments: $@"

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 21 / 46

Scripts - exercises

Exercise 1: How to compare floating-point numbers ? Hint bc -l, python -c ...

exit,print

Exercise 2: Loop through all links in current directory (and sub-directories), check the file
really exists (link is valid)

Exercise 3: Store script input parameters into variables array. Iteratively destroy input
parameters one by one and print the remaining on the screen (try all for, while and until

loops)

Exercise 4: For cycle to generate N random numbers (N=1000 if no argument passed to the
script) and print the highest value. Hint: $RANDOM.

Exercise 5: Select random 500 lines from mcData.txt (make sure the lines do not repeat)

Exercise 6: Loop through archives backup*, search for files named Invariant masses.txt,
join their content with mcData.txt and remove duplicated lines

Exercise 7: Batch analysis: script triggering a computation jobs

Job = generate 100 random numbers with given seed in rnd.txt, sleep 1 sec between the
generation
Run max. 5 jobs in parallel
Allow the script to run more than once without breaking the rule above
Hint: use flag-files or ps axuf to find out which jobs are running, which are finished

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 22 / 46

Scripts - exercises

Exercise 1: How to compare floating-point numbers ? Hint bc -l, python -c ...

exit,print

Exercise 2: Loop through all links in current directory (and sub-directories), check the file
really exists (link is valid)

Exercise 3: Store script input parameters into variables array. Iteratively destroy input
parameters one by one and print the remaining on the screen (try all for, while and until

loops)

Exercise 4: For cycle to generate N random numbers (N=1000 if no argument passed to the
script) and print the highest value. Hint: $RANDOM.

Exercise 5: Select random 500 lines from mcData.txt (make sure the lines do not repeat)

Exercise 6: Loop through archives backup*, search for files named Invariant masses.txt,
join their content with mcData.txt and remove duplicated lines

Exercise 7: Batch analysis: script triggering a computation jobs

Job = generate 100 random numbers with given seed in rnd.txt, sleep 1 sec between the
generation
Run max. 5 jobs in parallel
Allow the script to run more than once without breaking the rule above
Hint: use flag-files or ps axuf to find out which jobs are running, which are finished

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 22 / 46

Scripts running after logout

nohup

Most simple way to keep process running after logout (or killing mother terminal)

Syntax: nohup command arguments

Output goes to nohup.out file

screen

More complex system, behaving as a virtual terminal, allowing to:
Detach and re-attach to running session
After re-attaching one can see the output of the session
Works better on remote machines with complex authentication
Can name sessions
screen allows to send command to a running detached session

screen to start a session
CTRL-a d to detach from session
screen -list to list sessions (either attached or detached)
screen -r to attach to a sessions

tmux

Similar functionality to screen, but more actively developed

tmux to start a session
CTRL-b d to detach from sessions
tmux ls to list sessions
tmux attach to attach

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 23 / 46

Crontab - Reminder

CRON system:

/etc/crontab: basic file to run tasks per hour/day/week/month

/etc/cron.hourly

/etc/cron.daily

/etc/cron.weekly

/etc/cron.monthly

/etc/cron.d: more complicated rules

/etc/cron.d/renew_prak0x: crontab entries for reweval of the prak0x user home directories
Execute only during the period of the exercises (01.Oct - 20.Jan)
TODO ?: Add entry in between day in case of 2 excercises per single day

SHELL=/bin/bash

m h dom mon dow user command
32 01 * OCT,NOV,DEC,JAN SUN root /home/prak_template/bin/reboot.cron.sh
NO!!! (studenti by po rebootu nenasli sva data !)
#@reboot root /home/prak_template/bin/renew_prak0x.cron.sh
12 03 * OCT,NOV,DEC * root /home/prak_template/bin/renew_prak0x.cron.sh
12 03 1-20 JAN * root /home/prak_template/bin/renew_prak0x.cron.sh

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 24 / 46

Graphical interface to scripts

Programs to easily create simple
graphics interfaces:

Calendar

File selection

Forms

Messages

Lists

Progress bars

Text entry

dialog

Terminal-based graphics

See number of exampes in /usr/share/doc/dialog/examples

zenity / gdialog

Graphical windows (GTK)

See examples at https://help.gnome.org/users/zenity/3.32/

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 25 / 46

https://help.gnome.org/users/zenity/3.32/

Graphical interface to scripts

Programs to easily create simple
graphics interfaces:

Calendar

File selection

Forms

Messages

Lists

Progress bars

Text entry

dialog

Terminal-based graphics

See number of exampes in /usr/share/doc/dialog/examples

zenity / gdialog

Graphical windows (GTK)

See examples at https://help.gnome.org/users/zenity/3.32/

Huszár, Řezńıček Linux: Introduction NOFY077 December 21, 2023 25 / 46

https://help.gnome.org/users/zenity/3.32/

