
Faculty of Mathematics and Physics
CHARLES UNIVERSITY

NOFY077

Introduction to the Linux OS

Peter Huszár
KFA: Department of Atmospheric Physics

Pavel Řezńıček
ÚČJF: Institute of particle and nuclear physics

December 12, 2024

https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NOFY077
https://kfa.mff.cuni.cz/?page_id=238&lang=en
https://kfa.mff.cuni.cz/
http://ipnp.cz/~reznicek/
http://ipnp.cz/

Overview and Organization

Introduction to the Operation system Linux, focus on the command line,
scripting, basic services and tools used in (not only) physics: tasks
automation in data processing and modeling

Organization

Graded Assessment (KZ): attendance to the lectures, worked out homeworks

Literature

C. Herborth: Unix a Linux - Názorný pr̊uvodce, Computer Press, Praha, 2006

D. J. Barrett: Linux - Kapesńı p̌rehled, Computer Press, Praha, 2006

M. Sobell: Mistrovstv́ı v RedHat a Fedora Linux, Computer Press, Praha, 2006

M. Sobell: Linux - praktický pr̊uvodce, Computer Press, Praha, 2002

E. Siever: Linux v kostce, Computer Press, Praha, 1999

Number of online sources...

Study materials and homeworks

http://kfa.mff.cuni.cz/linux

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 2 / 18

http://kfa.mff.cuni.cz/?page_id=1236

Syllabus

1 UNIX systems, history, installation, basic applications

2 Structure of the Linux OS, file systems, hierarchy of the file system

3 Command line, shells, remote access (ssh, ftp)

4 Processes and their administration, basic system commands, packages, printing

5 Users, file and directory permissions

6 Work with files and directories, file compression, links, partition

7 Text-file processing commands, redirection, pipeline

8 Regular expressions

9 Command line based text editors

10 User and system variables, output processing

11 Scripts: basic construction, conditionals, loops, functions, automation

12 Networking, server-client services: http, (s)ftp, scp, ssh, sshfs, nfs

13 Programming in Linux (examples of Fortran, C/C++, Python), version control
systems, documents in Latex

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 3 / 18

sed - stream editor

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 4 / 18

sed - stream editor
Powerful text stream editing in command line

SED is the ultimate stream editor. It can substitue strings, add parts of text and
delete part of text according to rules given by the users.

SED can be used in two basic ways:

1
cat /my/input/file.txt | sed -e ’sed-script’ # this generate output on stdout
2
sed -i ’sed-script’ /my/input/file.txt # this will change the input file inline.

The most used functionality of sed is string substitution

on each line finds the first match for regex and replaces with ’string’
cat /my/file.txt | sed -e ’s/regex/string/’

"/" here serves as a command delimiter
one can use different one too

cat /my/file.txt | sed -e ’s:regex:string:’
cat /my/file.txt | sed -e ’s/regex/string/2’ # replace the 2nd occurence on line
cat /my/file.txt | sed -e ’s/regex/string/g’ # replace all occurence on the line

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 5 / 18

sed - stream editor cont’d
Powerful text stream editing in command line

In subtitution, one can remember the substituted string

echo "123 abc" | sed ’s/[0-9][0-9]*/& &/’ # & will stand for the match (123)
-> 123 123 abc

sed -re ’s/([a-z]*) ([a-z]*)/\2 \1/’ # \1 and \2 memorize the searched string
and replace them with \2 \1
-r extended regex !!!

By default, sed prints all lines in the output, not only those where the
replacement occured

cat /my/file.txt | sed -n -re ’s/regex/string/g p’
p - print, sed will print the matched lines (not only replacing)
-n, suppress printing lines, overwritten by "p" (effective for matched lines)
cat /my/file.txt | sed -re ’s/regex/string/g p’ # will print matched lines 2x

So far we have learn substitution and printing to all lines

However, in sed, you can specify, for which line (or line range) to do it. We call
it restriction.

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 6 / 18

sed - stream editor cont’d 2
Powerful text stream editing in command line

Specifying lines and line range - restrictions. The sed command than look like
sed restriction command

cat /my/file.txt | sed -e ’5 s/[0-9]/x/’ # do the substitution on the 5th
cat /my/file.txt | sed -e ’$ s/[0-9]/x/’ # do the substitution on the last line ($)
... | sed -e ’10,30 p’ # print lines 10-30 twice (with -n only those lines)
... | sed -e ’10,$ any-sed-command’ # perform the command from the 10line till end
... | sed -e ’/pattern/ any-sed-command’ # perform the command on lines that match pattern
... | sed -e ’10,/pattern/ any-sed-command’ # from line 10 to the 1st matched line (including)
... | sed -e ’/pattern1/,/pattern2/ any-sed-command’ #

pattern1 switches the ’any-sed-command’ on which is switched off by pattern2

i - insert, before the restricted lines (if no restriction is present insert before each
line)

a - append, after the restricted lines (if no restriction is present appned after
each line)

cat /my/file.txt | sed -e ’10,30 i ???’ # insert ??? before lines 10-30
cat /my/file.txt | sed -e ’/pattern/ a ###’ # append ### after lines matching the ’pattern’

A superb SED howto: http://www.grymoire.com/Unix/Sed.html#uh-0

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 7 / 18

http://www.grymoire.com/Unix/Sed.html#uh-0

Command Line Editors

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 8 / 18

Command Line Editors
VIM

VIM works effectively with keyboard only. Usage of mouse is discouraged.
Extensive syntax highlighting support.
Openning a (new file)

vim /my/file # this open the file for writing or even creates it if nonexistent

At this moment, user is in the command mode. I.e. any keyboard typed is
interpreted as command.
Let’s start with simple editing the file - press Insert or i. The -- INSERT --

appears on the bottom. This is the insert mode, the basic mode for typing text.
Pressing i or Insert again takes one to the Replace mode. The text is
replaced from the cursor.
To save the changes, press Esc to exit the insert mode and return to the
command mode. However, your file is not saved yet!!!
To save the file, press : to enter the last line mode. Now, the last line became a
command line and waits for a command.

:w # write the changes to the file
:w different_file # ’save as’ option to different file
:q # quit (wq - write changes and quit)
:x # write and quit
:q! # ignore the changes and quit

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 9 / 18

Command Line Editors
VIM - copy/paste and move text

To copy/move parts of text, press v or V from the command mode to enter the
Visual mode.

Now you can select the text you want to copy/move.

When the selection is done, press y for copy or d for cut(move)

Move the cursor to the place where you want to insert the copied text

Press p for paste

To copy/move one line press yy or dd and then p for eventual paste

Simple d delete texts. dd deletes the line where the cursor is.

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 10 / 18

Command Line Editors
VIM - more commands

To substitute text, enter the last time command

:%s/pattern/replace/g # global replace of pattern to replace (% = each line)
g = each occurence on line

:1,10 s/pattern/replace/ # replace "pattern" with "replace" on lines 1 to 10

Undo the last change, :u

Search some pattern /pattern

:set nowrap - unwraps long lines

:syntax on

:10 - jump to the 10th line

Shift + G jumps to the end of the file

Very useful tab identation for e.g. Python (tab = 4 spaces):
:set tabstop=4 expandtab shiftwidth=4 softtabstop=4

:help shiftwidth

For almost complete VIM tutorial, see:
https://www.tutorialspoint.com/vim/index.htm

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 11 / 18

https://www.tutorialspoint.com/vim/index.htm

Command Line Editors
NANO - briefly (written in VIM :-))

NANO (Nano is ANOther editor) is a small, free and friendly editor

NANO is part of every Linux distribution’s base instalation (which is not true for
VIM)

Easier control over editing. Using Ctrl+ combination

GNU nano 2.5.3 File: myfile Modified
Our first text in Nano.
The second line.
^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify ^C Cur Pos
^X Exit ^R Read File ^\ Replace ^U Uncut Text^T To Spell ^_ Go To Line

To save the just edited ”buffer”: Ctrl+O then enter the filename to save

Insert content of different file: Ctrl+R, to delete the current line: Ctrl+K

To exit: Ctrl+X, if one does not want to write the file, press N

NANO supports syntax highlighting

ucitel@mypc:~$ ls /usr/share/nano/
add this line to ~/.nanorc for every language
include /usr/share/nano/python.nanorc # e.g.

For almost complete NANO tutorial, see:
https://www.howtogeek.com/howto/42980/

the-beginners-guide-to-nano-the-linux-command-line-text-editor/

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 12 / 18

https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/

Command Line Editors
EMACS

EMACS is a GNU project originally created by Richard Stallman. A very powerfull
command line editor (with possible graphical interface)
Not covered with this course, for more information:
http://xahlee.info/emacs/emacs/emacs.html

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 13 / 18

http://xahlee.info/emacs/emacs/emacs.html

Shell Variables

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 14 / 18

Variables
BASH variables

You can use variables as in any programming languages. There are no data types. A
variable in bash can contain a number, a character, a string of characters. You have
no need to declare a variable, just assigning a value to its reference will create it.

Creation and assigning a variable

STR="Hello World!"
echo ${STR} # to refer to variable value, use $
MYVAR=1000000
echo ${MYVAR} MYVAR # this prints ’1000000 MYVAR’

There are system variables that control the behavior of the system/shell/GUI:
The command set will list all the system/shell variables (and functions - see
later)
E.g. $HOME - the HOME directory, $LANGUAGE - the system language, $PS1
- the look of the prompt
E.g. $PATH - the list of paths, where BASH looks for binary files
User can define his own system variables by setting them in .bashrc (in your
home directory)
use export MYVAR="value" in order the variable behaves as global
A variable can be in three states: defined with a value (MYVAR=value), defined
with NULL value (MYVAR=) and unset. To unset a variable, use unset MYVAR.
You can define new variables with existing ones:
NEWVAR=${OLDVAR1}${OLDVAR2} (this example merges two strings)

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 15 / 18

Variables
Variable expansion

Bash enables numerous operations on variable value and gathering information
on the variable (besides ”asking” for its value)

${#MYVAR} # the length of variable value
${!prefix*} # prints all variables with their names starting with "prefix"
${MYVAR#pattern} # removes the match for pattern from the beginnig of MYVAR value
${MYVAR%pattern} # same as above but from the end of value
${MYVAR/pattern/string} # replaces pattern in MYVAR with string
${MYVAR^^} and ${MYVAR,,} # makes variables characters upper/lower case

In the above examples, variables are ”expanded” to a new value, which can be
written out (with echo) or just saved to different variable(s).

In the followig example, we rename all jpg files in a directory to JPG

for f in *.jpg; do # we will learn later
echo "Renaming $f ..."
mv $f ${f/.jpg/.JPG}

done

For a full list of variable expansion possibilities, see https://www.gnu.org/
software/bash/manual/html_node/Shell-Parameter-Expansion.html

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 16 / 18

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Variables
Command output substitution in a variable

The output of any command can be assigned to a variable as value in two
syntactical way:

MYVAR=$(mycommand) # preferred
MYVAR=‘ mycommand ‘ # not preferred
the first way enables nesting:
MYVAR=$(mycommand $(anothercommand)) # mycommand takes the output of another command as argument

eval - is a built-in Linux command which is used to execute arguments as a shell
command. It combines arguments into a single string and uses it as an input to
the shell and execute the commands.

MYVAR="ls -l /mydir"
eval $MYVAR
MYVAR=’$’
MYVAR2=value
eval echo ${MYVAR}MYVAR2

Use variable as a (part of) name for another variable.

MYVAR_A="123"
i=A
echo $((MYVAR_$i))
eval MYVAR_$i="456"
echo $MYVAR_A

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 17 / 18

Variables
Arrays in BASH

Bash supports 1-dimensional arrays with arbitrary integer indexing

MYARR= (1 2 a b ahoj abc) # definition of an array, in this case indexing is starting from zero
echo ${MYARR[0]} -> 1 etc.
MYARR[100] = value # we can define/add arbitraty index
MYARR=([7]=a [10]=b [100]=c) # possibility of defining arbitrary index
MYARR+=(newelement1 newelement2) # extenstion of array

Different information can retreived of arrays, including its length, list of elemets,
list of indexes

echo ${MYARR[*]} # prints all the elements
... ${#MYARR[*]} # number of elements
... ${!MYARR[*]} # the list of indexes

Huszár, Řezńıček Linux: Introduction NOFY077 December 12, 2024 18 / 18

	sed - stream editor
	Command Line Editors
	Shell Variables

