
Faculty of Mathematics and Physics
CHARLES UNIVERSITY

NOFY077

Introduction to the Linux OS

Peter Huszár
KFA: Department of Atmospheric Physics

Pavel Řezńıček
ÚČJF: Institute of particle and nuclear physics

December 19, 2024

https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NOFY077
https://kfa.mff.cuni.cz/?page_id=238&lang=en
https://kfa.mff.cuni.cz/
http://ipnp.cz/~reznicek/
http://ipnp.cz/

Overview and Organization

Introduction to the Operation system Linux, focus on the command line,
scripting, basic services and tools used in (not only) physics: tasks
automation in data processing and modeling

Organization

Graded Assessment (KZ): attendance to the lectures, worked out homeworks

Literature

C. Herborth: Unix a Linux - Názorný pr̊uvodce, Computer Press, Praha, 2006

D. J. Barrett: Linux - Kapesńı p̌rehled, Computer Press, Praha, 2006

M. Sobell: Mistrovstv́ı v RedHat a Fedora Linux, Computer Press, Praha, 2006

M. Sobell: Linux - praktický pr̊uvodce, Computer Press, Praha, 2002

E. Siever: Linux v kostce, Computer Press, Praha, 1999

Number of online sources...

Study materials and homeworks

http://kfa.mff.cuni.cz/linux

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 2 / 26

http://kfa.mff.cuni.cz/?page_id=1236

Syllabus

1 UNIX systems, history, installation, basic applications

2 Structure of the Linux OS, file systems, hierarchy of the file system

3 Command line, shells, remote access (ssh, ftp)

4 Processes and their administration, basic system commands, packages, printing

5 Users, file and directory permissions

6 Work with files and directories, file compression, links, partition

7 Text-file processing commands, redirection, pipeline

8 Regular expressions

9 Command line based text editors

10 User and system variables, output processing

11 Scripts: basic construction, conditionals, loops, functions, automation

12 Networking, server-client services: http, (s)ftp, scp, ssh, sshfs, nfs

13 Programming in Linux (examples of Fortran, C/C++, Python), version control
systems, documents in Latex

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 3 / 26

Shell Variables

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 4 / 26

Variables
BASH variables

You can use variables as in any programming languages. There are no data types. A
variable in bash can contain a number, a character, a string of characters. You have
no need to declare a variable, just assigning a value to its reference will create it.

Creation and assigning a variable

STR="Hello World!"
echo ${STR} # to refer to variable value, use $
MYVAR=1000000
echo ${MYVAR} MYVAR # this prints ’1000000 MYVAR’

There are system variables that control the behavior of the system/shell/GUI:
The command set will list all the system/shell variables (and functions - see
later)
E.g. $HOME - the HOME directory, $LANGUAGE - the system language, $PS1
- the look of the prompt
E.g. $PATH - the list of paths, where BASH looks for binary files
User can define his own system variables by setting them in .bashrc (in your
home directory)
use export MYVAR="value" in order the variable behaves as global
A variable can be in three states: defined with a value (MYVAR=value), defined
with NULL value (MYVAR=) and unset. To unset a variable, use unset MYVAR.
You can define new variables with existing ones:
NEWVAR=${OLDVAR1}${OLDVAR2} (this example merges two strings)

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 5 / 26

Variables
Variable expansion

Bash enables numerous operations on variable value and gathering information
on the variable (besides ”asking” for its value)

${#MYVAR} # the length of variable value
${!prefix*} # prints all variables with their names starting with "prefix"
${MYVAR#pattern} # removes the match for pattern from the beginnig of MYVAR value
${MYVAR%pattern} # same as above but from the end of value
${MYVAR/pattern/string} # replaces pattern in MYVAR with string
${MYVAR^^} and ${MYVAR,,} # makes variables characters upper/lower case

In the above examples, variables are ”expanded” to a new value, which can be
written out (with echo) or just saved to different variable(s).

In the followig example, we rename all jpg files in a directory to JPG

for f in *.jpg; do # we will learn later
echo "Renaming $f ..."
mv $f ${f/.jpg/.JPG}

done

For a full list of variable expansion possibilities, see https://www.gnu.org/
software/bash/manual/html_node/Shell-Parameter-Expansion.html

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 6 / 26

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Variables
Command output substitution in a variable

The output of any command can be assigned to a variable as value in two
syntactical way:

MYVAR=$(mycommand) # preferred
MYVAR=‘ mycommand ‘ # not preferred
the first way enables nesting:
MYVAR=$(mycommand $(anothercommand)) # mycommand takes the output of another command as argument

eval - is a built-in Linux command which is used to execute arguments as a shell
command. It combines arguments into a single string and uses it as an input to
the shell and execute the commands.

MYVAR="ls -l /mydir"
eval $MYVAR
MYVAR=’$’
MYVAR2=value
eval echo ${MYVAR}MYVAR2

Use variable as a (part of) name for another variable.

MYVAR_A="123"
i=A
echo $((MYVAR_$i))
eval MYVAR_$i="456"
echo $MYVAR_A

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 7 / 26

Variables
Arrays in BASH

Bash supports 1-dimensional arrays with arbitrary integer indexing

MYARR= (1 2 a b ahoj abc) # definition of an array, in this case indexing is starting from zero
echo ${MYARR[0]} -> 1 etc.
MYARR[100] = value # we can define/add arbitraty index
MYARR=([7]=a [10]=b [100]=c) # possibility of defining arbitrary index
MYARR+=(newelement1 newelement2) # extenstion of array

Different information can retreived of arrays, including its length, list of elemets,
list of indexes

echo ${MYARR[*]} # prints all the elements
... ${#MYARR[*]} # number of elements
... ${!MYARR[*]} # the list of indexes

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 8 / 26

Scripts

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 9 / 26

Scripts (reminder)

Sequence of commands to be processed.

Allows functions, loops, conditions, call external commands

Two ways how to run a script:
./script.sh: starts a new shell and runs the script in it (script file must be executable:
chmod +x ./script.sh

source ./script.sh (or also . ./script.sh: runs the commands from the script one by
one in the current shell → i.e. as if one would write them manually in the current terminal
*.sh used for bash-compatible scripts
*.csh used for csh-compatible scripts

are used for comments

Special header ”comment”: #!/usr/bin/zsh instructs the script to be run by
the zsh shell. Not only for shells, but also for interpreters like python

exit [number] to quit script [and possibly return a return code]
Not needed at the very end of a script, it will end by itself

set -x command inside a script instruct to show the commands being run by
the script (i.e. for debugging)

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 10 / 26

Special characters (reminder)

’’ (single quotes) do no interpret special chars, while "" (double quotes) do
e.g. echo ’$i’ vs. echo "$i"

‘‘ (single backquotes) to insert output of command between the quotes
But better use $(command) instead

; (semicolon) allows to put more commands on single line
e.g. echo "ahoj" ; echo "abc"

& at the end of line to run program in the background, while continuing in the
script

\ (backslash) cancels meaning of a special character
e.g. echo "\$i"
e.g. not to interpret space (./script.sh ahoj\ abc = ./script.sh "ahoj abc")
e.g. to allow quotes inside quotes (echo "var = \"ahoj\"")
at the end of line means wrapping - the line continues and the next line. Otherwise
end-of-line is interpreted as delimiter of next command (equivalent of ;)

echo \
"ahoj"

for myfile in filename1 \
filename2 \
filename3 \

do
echo $myfile

done

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 11 / 26

Script special variables

Input arguments

The arguments passed with script are accessiable via special variables

./script.sh arg1 arg2 arg3 ...

$1, $2, $3, ... Individual arguments on command line (positional parameters)
$# Number of command-line arguments
$* All arguments on command line ("$1 $2 ...")
$@ All arguments on command line, individually quoted ("$1" "$2" ...)
$0 Command name

Use shift command to ”destroy” the first argument and shift the list of arguments to left,

i.e. $1 becomes what was $2, $2 what was $3 etc., while original content of $1 is lost

Control of run commands in script (as well as in shell)

$? Return value (exit code) of the last preceding command
$! Process ID number (PID, see ’ps axuf’ of the last preceding command
$$ Process ID number of the current process (the shell running the script)

Quick check of input variables content (script: $var replace by $1)

${var:-value} Use var if set; otherwise, use value
${var:=value} Use var if set; otherwise, use value and assign value to var
${var:?value} Use var if set; otherwise, print value and exit
${var:+value} Use value if var is set; otherwise, use nothing

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 12 / 26

Test expressions

test EXPRESSION: compare values, check file types, same as [EXPRESSION]

[[EXPRESSION]]: more versatile version of []

(()): arithemtic tests (e.g. comparision of numbers)

Return code $? is 0 if true, 1 if false

(EXPRESSION) EXPRESSION is true
! EXPRESSION EXPRESSION is false
EXPRESSION1 -a EXPRESSION2 both EXPRESSION1 and EXPRESSION2 are true
EXPRESSION1 -o EXPRESSION2 either EXPRESSION1 or EXPRESSION2 is true
-n STRING the length of STRING is nonzero (also without -n)
-z STRING the length of STRING is zero
STRING1 = STRING2 the strings are equal
STRING1 != STRING2 the strings are not equal
INTEGER1 -eq INTEGER2 INTEGER1 is equal to INTEGER2
INTEGER1 -ge INTEGER2 INTEGER1 is greater than or equal to INTEGER2
INTEGER1 -gt INTEGER2 INTEGER1 is greater than INTEGER2
INTEGER1 -le INTEGER2 INTEGER1 is less than or equal to INTEGER2
INTEGER1 -lt INTEGER2 INTEGER1 is less than INTEGER2
INTEGER1 -ne INTEGER2 INTEGER1 is not equal to INTEGER2

FILE1 -nt FILE2 FILE1 is newer (modification date) than FILE2
FILE1 -ot FILE2 FILE1 is older than FILE2
-d FILE FILE exists and is a directory
-e FILE FILE exists
-f FILE FILE exists and is a regular file
-L FILE FILE exists and is a symbolic link
-r FILE FILE exists and read permission is granted
-w FILE FILE exists and write permission is granted
-x FILE FILE exists and execute (or search) permission is granted
-s FILE FILE exists and has a size greater than zero

... and other file flags (ownership, types)

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 13 / 26

Expressions

Arguments in EXPRESSION typically contain output of commands

test $(cat /etc/passwd | cut -d: -f1 | wc -l) -gt 100
test ‘cat /etc/passwd | cut -d: -f1 | wc -l‘ -gt 100

Be careful to treat cases when arguments in expression can contain spaces,
better always use "" for string arguments (works for integers too though),
especially when argument is an output of command with not-well predictable
result ! (e.g. filenames can contain spaces...)

i="ahoj abc"
test $i = "ahoj abc" # results in: bash: [: too many arguments
test "$i" = "ahoj abc" # OK

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 14 / 26

Tests (cont’d)

[] vs [[]]: Using the [[...]] test construct, rather than [...] can
prevent many logic errors in scripts. For example, the &&, ||, <, and > operators
work within a [[]] test, despite giving an error within a [] construct. Arithmetic
evaluation of octal or hexadecimal constants takes place automatically within a [[

...]] construct.

[[-L $file && -f $file]] works in [[]]
[-L "$file"] && [-f "$file"]
[[a < b]]: lexicographical comparison
[a \< b]: Same as above. \ required or else does redirection like for any other command.
[[a = a && b = b]]: true, logical and
[a = a && b = b]: syntax error, && parsed as an AND command separator cmd1 && cmd2
[[(a = a || a = b) && a = b]] vs. [(a = a)]: syntax error, () is interpreted as a subshell

((EXPRESSION))

((5 > 4))
((5 == 5))
((t = 40 < 45?7:11)) # C-style trinary operator.
echo "If 40 < 45, then t = 7, else t = 11."

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 15 / 26

Conditions - if/then/else

Use result of test

Notation using square brackets [EXPRESSION]

if [EXPRESSION]
then

command1
elif [EXPRESSION]
then

command2
else

command3
fi

if [EXPRESSION] ; then
command1

elif [EXPRESSION] ; then
command2

else
command3

fi

Short one-command condition using && and/or ||:

[EXPRESSION] && command1 || command2

is equivalent to:

if [EXPRESSION] ; then command1 ; else command2 ; fi

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 16 / 26

Conditions - case

Equivalent of if/then/elif/elif/.../else/fi statements chain

Can use shell pattern matching (e.g. *)

Use | for OR of matches

On match the sequence of commands is run till ;;

*) typically used for safety else with an error message that there was no match

case $varname in
pattern1)

command1
;;

pattern2|pattern3|pattern4)
command2
;;

*)
command_error_no_match

esac

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 17 / 26

Loops - while/until/do/done

Keep looping (un)till EXPRESSION is valid

Assuming the arguments in the EXPRESSION are changing during the sequence
of commands in the loop, thus allowing the loop to stop at some point

Can immediately stop the loop with break command

Can immediately jump to next iteration with continue command

While

Stop looping if EXPRESSION becomes false

while [EXPRESSION]
do

commands
if [...] ; then break ; fi # alternative way to stop the loop

done

Until

Stop looping when EXPRESSION becomes true

until [EXPRESSION]
do

commands
if [...] ; then break ; fi # alternative way to stop the loop

done

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 18 / 26

For cycle

Loop over predefined list of items
The list of items to cycle over is space-separated
Can immediately stop the loop with break command
Can immediately jump to next iteration with continue command
seq 1 100 to generate list of indexes from 1 to 100

for var_i in item1 item2 item3
do

commands
if [...] ; then break ; fi # possible way to stop the loop prematurelly

done

Space separation in list

Potentially dangerous when list contains items with space, e.g. weird filenames

For files use find command instead of for cycle

Or replace spaces by a defined string and inside the loop revert this replacement:

Would not work for files with space
for i in $(ls -1) ; do

echo $i
done

Works:
for ii in $(ls -1 | sed ’s, ,__mezera__,g’) ; do

i=$(echo $ii | sed ’s,__mezera__, ,g’)
echo $i

done
Works
find . -maxdepth 1 -name ’*’ -exec echo {} \;
Works
find . -maxdepth 1 -name ’a*’ | while read i ; do echo $i ; done

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 19 / 26

For cycle

Loop over predefined list of items - cont’d

The list of items to cycle over can be defined alternatively like:

for i in {1..5};do echo $i ;done
from BASH v4.0+, {START..END..INCREMENT} syntax
for in {0..10..2};do echo $i ;done
control the width of the loop item:
for i in {001..500};do echo $i ;done
or combining with other character and multiple ranges
for i in a{001..500} {700..999};do echo $i ;done

The C-style Bash for loop
for ((initializer; condition; step))
for ((c=1; c<=5; c++));do echo $c ;done

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 20 / 26

Functions

Similar behaviour as in other programming languages

Mostly to help organization/readabilty of the code

Accept parameters, treated in similar way as input parameters of scripts (i.e. $1,
$2, etc.)

Output transfered via echo command or e.g. my modifying a ”global” variable

x=0

myfunc() {
for i in $@ ; do

echo $i
done
x=1

}

echo $x
myfunc a bb cc 123
echo $x
x=0
str=‘myfunc dd ee‘ # x is not changed, myfunc is run in separate shell !
echo $str
echo $x

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 21 / 26

Automatic script options

Use of getopt command

Colon : after option letter specifies that the option is expecting an argument

while getopts ’ha:’ OPTION; do
case "$OPTION" in

h)
echo "Option h (does not expect argument)"
;;

a)
echo "Option a with value \"$OPTARG\""
;;

?)
echo "script usage: $(basename $0) [-h] [-a somevalue]" >&2
exit 1
;;

esac
done
shift "$(($OPTIND -1))"

echo "Remaining input arguments: $@"

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 22 / 26

Scripts - exercises

Exercise 1: How to compare floating-point numbers ? Hint bc -l, python -c ...

exit,print

Exercise 2: Loop through all links in current directory (and sub-directories), check the file
really exists (link is valid)

Exercise 3: Store script input parameters into variables array. Iteratively destroy input
parameters one by one and print the remaining on the screen (try all for, while and until

loops)

Exercise 4: For cycle to generate N random numbers (N=1000 if no argument passed to the
script) and print the highest value. Hint: $RANDOM.

Exercise 5: Select random 500 lines from mcData.txt (make sure the lines do not repeat)

Exercise 6: Loop through archives backup*, search for files named Invariant masses.txt,
join their content with mcData.txt and remove duplicated lines

Exercise 7: Batch analysis: script triggering a computation jobs

Job = generate 100 random numbers with given seed in rnd.txt, sleep 1 sec between the
generation
Run max. 5 jobs in parallel
Allow the script to run more than once without breaking the rule above
Hint: use flag-files or ps axuf to find out which jobs are running, which are finished

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 23 / 26

Scripts - exercises

Exercise 1: How to compare floating-point numbers ? Hint bc -l, python -c ...

exit,print

Exercise 2: Loop through all links in current directory (and sub-directories), check the file
really exists (link is valid)

Exercise 3: Store script input parameters into variables array. Iteratively destroy input
parameters one by one and print the remaining on the screen (try all for, while and until

loops)

Exercise 4: For cycle to generate N random numbers (N=1000 if no argument passed to the
script) and print the highest value. Hint: $RANDOM.

Exercise 5: Select random 500 lines from mcData.txt (make sure the lines do not repeat)

Exercise 6: Loop through archives backup*, search for files named Invariant masses.txt,
join their content with mcData.txt and remove duplicated lines

Exercise 7: Batch analysis: script triggering a computation jobs

Job = generate 100 random numbers with given seed in rnd.txt, sleep 1 sec between the
generation
Run max. 5 jobs in parallel
Allow the script to run more than once without breaking the rule above
Hint: use flag-files or ps axuf to find out which jobs are running, which are finished

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 23 / 26

Scripts running after logout

nohup

Most simple way to keep process running after logout (or killing mother terminal)

Syntax: nohup command arguments

Output goes to nohup.out file

screen

More complex system, behaving as a virtual terminal, allowing to:
Detach and re-attach to running session
After re-attaching one can see the output of the session
Works better on remote machines with complex authentication
Can name sessions
screen allows to send command to a running detached session

screen to start a session
CTRL-a d to detach from session
screen -list to list sessions (either attached or detached)
screen -r to attach to a sessions

tmux

Similar functionality to screen, but more actively developed

tmux to start a session
CTRL-b d to detach from sessions
tmux ls to list sessions
tmux attach to attach

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 24 / 26

Crontab - Reminder

CRON system:

/etc/crontab: basic file to run tasks per hour/day/week/month

/etc/cron.hourly

/etc/cron.daily

/etc/cron.weekly

/etc/cron.monthly

/etc/cron.d: more complicated rules

/etc/cron.d/renew_prak0x: crontab entries for reweval of the prak0x user home directories
Execute only during the period of the exercises (01.Oct - 20.Jan)
TODO ?: Add entry in between day in case of 2 excercises per single day

SHELL=/bin/bash

m h dom mon dow user command
32 01 * OCT,NOV,DEC,JAN SUN root /home/prak_template/bin/reboot.cron.sh
NO!!! (studenti by po rebootu nenasli sva data !)
#@reboot root /home/prak_template/bin/renew_prak0x.cron.sh
12 03 * OCT,NOV,DEC * root /home/prak_template/bin/renew_prak0x.cron.sh
12 03 1-20 JAN * root /home/prak_template/bin/renew_prak0x.cron.sh

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 25 / 26

Graphical interface to scripts

Programs to easily create simple
graphics interfaces:

Calendar

File selection

Forms

Messages

Lists

Progress bars

Text entry

dialog

Terminal-based graphics

See number of exampes in /usr/share/doc/dialog/examples

zenity / gdialog

Graphical windows (GTK)

See examples at https://help.gnome.org/users/zenity/3.32/

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 26 / 26

https://help.gnome.org/users/zenity/3.32/

Graphical interface to scripts

Programs to easily create simple
graphics interfaces:

Calendar

File selection

Forms

Messages

Lists

Progress bars

Text entry

dialog

Terminal-based graphics

See number of exampes in /usr/share/doc/dialog/examples

zenity / gdialog

Graphical windows (GTK)

See examples at https://help.gnome.org/users/zenity/3.32/

Huszár, Řezńıček Linux: Introduction NOFY077 December 19, 2024 26 / 26

https://help.gnome.org/users/zenity/3.32/

	Shell Variables
	Scripts

